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Abstract: In this paper, we examine stacky structures in certain Einstein gravity theories. In brief, using the classical
formulation of (vacuum) gravity, with vanishing cosmological constant, we first construct the stack of solutions to Einstein
field equations on any given fixed manifold. Using a similar approach and setup, we also study Einstein’s gravity on
families of manifolds and define another stack encoding this situation. Later on, we focus on the gauge theoretical
interpretation of 3D gravity and provide a natural stack associated with that interpretation. Finally, in a particular
setup, we give a natural morphism between the two stacks arising from different descriptions of 3D gravity.
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1. Introduction
Stacks are interesting higher spaces that appear in geometry and physics. Regarding physics-related problems,
for example, Costello and Gwilliam [8] study gauge theories and factorization algebras in the context of derived
algebraic geometry (DAG), which is a handy framework that combines algebraic geometry with homotopy theory
using a higher categorical dictionary. In that respect, it offers new ways of organizing information for various
purposes [1, 15]. Let us go back to the examples of interest: Benini et al. [3] describe a stacky formulation
of Yang–Mills fields on Lorentzian manifolds; Benini and Schenkel [2] examine higher structures in algebraic
quantum field theory; and Ludewig and Stoffel [12] study geometric functorial field theories. This is, of course,
not a complete list. There are many other interesting examples on stacks and neighboring subjects in the
literature.

The current work is centered around the fact that the phase spaces of our interest have the structure of
a groupoid, rather than a set. To be more specific, for ordinary field theories, the collection of fields have the
structure of a set, and hence two fields f, f ′ are said to be the same if and only if the equation f = f ′ holds
set theoretically. However, for gauge theories, two gauge fields A,A′ are the “same” if there exists a gauge
transformation g : A→ A′ relating them.

Due to the extra data mentioned above, points in the corresponding phase space naturally form a
groupoid: i.e. the data should include the points (the fields of our theory), along with invertible (gauge)
transformations between them. Consequently, the phase space of a gauge theory turns out to be a “higher
space” (called a stack) rather than an “ordinary space”. More details can be found in [2, 3].
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Of course, one can naturally ask for similar kinds of relations between gauge transformations themselves.
For instance, if there are gauge transformations between gauge transformations, then the underlying structure
of the collection of points will be encoded by “2-groupoids”. One can play the same game for these “2nd level
transformations” and ends up with 3-groupoids, etc. Using a higher categorical dictionary, this essentially leads
to the notion of an infinite tower of equivalences. Therefore, if we allow higher symmetries in gauge theory, the
natural framework will be encoded by ∞ -groupoids; hence, the corresponding phase space becomes a higher
stack. For details, we again refer to [2, 3].

It should be clear by now why it is natural to investigate similar structures in Einstein’s theory of general
relativity: Once symmetries are involved as a part of the data, one should interpret phase spaces as higher
spaces, rather than just ordinary spaces. This slogan can eventually lead to a new way of formalizing the data
and make certain higher algebraic tools available. In this paper, we only consider “first” level symmetries of
the theory. Therefore, stacks naturally enter the picture, and they are good enough to encode the underlying
structure of the phase space. In short, stacks are good enough for our purposes, and thus, we concentrate on
stacky constructions for Einstein’s theory of gravity.

In this paper, we give some nontrivial “stacky” constructions in the case of certain gravity theories and
investigate their possible consequences. In short, we define the stacks of Ricci-flat metrics on a fixed manifold
and on families of manifolds; a gauge theoretical stack of 3D gravity; and a natural transformation between the
two stacks arising from the different models of 3D gravity.

Let us report our results in detail. Using the homotopy theory of stacks (cf. §2.1), we first give an
elementary construction of the so-called moduli stack of vacuum Einstein gravity on a Lorentzian spacetime
with vanishing cosmological constant. More precisely, we prove the following theorem.

Theorem 1.1 Given a Lorentzian n-manifold M , let C be the category of open subsets of M that are
diffeomorphic to Rn , with morphisms being canonical inclusions between open subsets whenever U ⊂ V . Then
the presheaf E ∈ PSh(C, Grpds)

Cop −→ Grpds, U 7→ E(U)

is a stack of Ricci-flat Lorentzian metrics on C , where for an object U of C , E(U) is a groupoid such that the
objects of E(U) form the set Ob(E(U)) :=

{
g ∈ Γ(Sym2(T ∗U)) : Ric(g) = 0

}
, and a morphism in E(U) is

determined by an automorphism of Sym2(T ∗U) .

Here, Grpds denotes the 2-category of groupoids. Roughly speaking, E is a prestack (a presheaf of groupoids)
that preserves certain structures and possesses the descent property. The precise description of E , as a prestack,
is given in Lemma 3.1, while the descent property and the site structure are discussed in §3.1.

Theorem 1.1 provides a suitable stack that in fact captures the contravariance and locality behaviors of
the Ricci-flat geometric structure on the underlying manifold M . On the other hand, in the context of moduli
theory, it is natural to study smoothly varying families of manifolds as well. Therefore, we also investigate
Ricci-flat Lorentzian metrics on families of manifolds and define a new stack encoding this situation.

To be more specific, we require geometric structures to vary in families, parametrized over cartesian
spaces. In brief, this can be achieved by replacing the category C in Theorem 1.1 by the site Famn of families
of manifolds, where its objects are submersions π : M → S, with n -dimensional fibers, and morphisms are
fiberwise open embeddings. With this modification, we prove the following result (cf. §3.2).
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Theorem 1.2 Let Famn be the site of families of manifolds (with n-dimensional fibers). Denote an object of
Famn by M/S . Then the presheaf Efam on Famn

Famop
n −→ Grpds, M/S 7→ Efam(M/S)

is a stack, where for each object M/S in Famn , Efam(M/S) is a groupoid such that its objects form
a set {g ∈ Γ(Sym2(T ∗(M/S))) : Ric(g) = 0} , with morphisms determined by certain automorphisms of
Sym2(T ∗(M/S)) . Note that T ∗(M/S) denotes the relative cotangent bundle T ∗(M/S) = Coker(T ∗S → T ∗M).

Additionally, we examine the so-called “equivalence” of 3D gravity with gauge theory. Our setup consists
of vacuum 3D Einstein gravity (with vanishing cosmological constant Λ) on Lorentzian spacetimes of the form
M := Σ× R , where Σ is a closed Riemann surface of genus g > 1 .

Let us denote the aforementioned gravity theory by GR3D
Λ=0(M) and the corresponding gauge theory by

CS3D
ISO(2,1)(M) . By equivalence, we essentially mean the existence of an isomorphism between the phase spaces

of these theories (i.e. moduli spaces of solutions to the corresponding field equations)

Mod(GR3D
Λ=0(M))

∼−→Mod(CS3D
ISO(2,1)(M)),

which sends a flat pseudo-Riemannian metric [g] to the corresponding flat gauge field [Ag] . More details will
be discussed in subsection 2.2.3, but the upshot is that once there exists such an equivalence on the classical
level, one can construct a natural stack morphism between the stacks of these theories. Here, by a stack of a
theory, we mean the stack of solutions to the corresponding field equations of the theory under consideration.
This approach essentially encodes nontrivial stacky structures on top of the naïve moduli spaces of solutions
and then provides a stacky extension for the map between these moduli spaces. In this regard, we prove the
following result.

Theorem 1.3 Suppose that M = Σ× (0,∞) is a Lorentzian 3-manifold, where Σ is a closed Riemann surface
of genus g > 1 . Let E and M denote the moduli stacks of GR3D

Λ=0(M) and CS3D
ISO(2,1)(M) , respectively. Then

there exists an induced natural transformation Φ :M⇒ E (cf. Construction (3.13)).

Now, let us outline the remainder of this paper. Section 2 includes preliminaries. It begins by reviewing
Hollander’s study [9] on the homotopy theory of stacks. In subsection 2.2, we discuss different formulations of
3D gravity and their consequences. In subsection 3.1, we first present an elementary construction of the moduli
prestack of Einstein gravity (cf. Lemma 3.1). Then we give the proof of Theorem 1.1 using the homotopy
theory of stacks. In subsection 3.2, we explain the content of Theorem 1.2 in more detail and give a sketch of
the proof. Finally, subsection §3.3 provides the proof of Theorem 1.3. We also have Appendices A and B to
support some ideas in the text.

2. Recollection
2.1. Background from the homotopy theory of stacks
It is very well-known that by Yoneda’s embedding, one can consider spaces as functors in addition to the
standard ringed-space formulation [15]. In this paper, we follow the same approach to define stacks. More
precisely, we work within the context of Hollander’s theory of stacks [9]. In what follows, we present some key
notions and constructions. We mostly follow [3, 9].
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Groupoids. Recall that a groupoid is a category in which all morphisms are isomorphisms. Since each
groupoid is a category itself (i.e. it has own objects and morphisms between any pair of objects with a list of
axioms), the collection of groupoids has the structure of a 2-category.

By a 2-category C , we mean a category enriched over the cartesian monoidal category Cat , where Cat

is the category with small categories as objects and with functors as morphisms. Thus, C has a collection of
objects, and for each pair of objects A,B , the mapping space Hom(A,B) has the structure of a category,
rather than a set. In that case, we call the objects of Hom(A,B) 1-morphisms of C , and call the morphisms
of Hom(A,B) 2-morphisms of C ; and all relations are up to 2-isomorphisms∗. Then we have the following
example.

Example 2.1 (2-category of groupoids Grpds) Objects of Grpds are just groupoids; 1-morphisms in Grpds

are functors F : G → H between two groupoids; and 2-morphisms are natural transformations η : F ⇒ G of
functors, where F ,G ∈ Fun(G,H) . In this example, there are no nontrivial higher n-morphisms for n > 2 .
Once we allow such types of morphisms, we land in the territory of higher categories.

Groupoids form a model category. The other important feature of Gpds is that one can do homotopy
theory with groupoids. This is possible because Gpds has a suitable structure, the model structure, which makes
it a model category. In brief, a model structure† consists of three distinguished classes of morphisms, namely
weak equivalences, fibrations, and cofibrations with a big list of axioms, see [9, 10]. Then we have:

Theorem 2.2 The 2-category Gpds admits a model structure, where

1. A morphism F : C → D in Gpds is a weak equivalence if it is fully faithful and essentially surjective.

2. A morphism F : C → D in Gpds is a fibration if for each object A in C and each morphism
ϕ : F(A) ∼−→ D in D , there exist an object B and a morphism f : A

∼−→ B in C such that F(f) = ϕ. A
morphism F : C → D is a cofibration if it is injective on objects.

Homotopy limits in groupoids. Hollander [9] provides simple and tractable models for the homotopy
limits of a cosimplicial diagram in Grpds . The key observation of [9] is that the homotopy approach encodes
the classical descent conditions for stacks in a compact way. Let us start with some terminology.

Definition 2.3 Denote by ∆ the category of finite ordered sets, where objects are finite ordered sets [n] :=

{0 < 1 < 2 < · · · < n} and morphisms are f : [n] → [m] nondecreasing functions. Given a category C , a
cosimplicial object in a category C is a functor X• : ∆ −→ C , Denote the image by X•([n]) =: Xn .

Definition 2.4 Given a cosimplicial object X• in C , one obtains a sequence of objects {Xn} in C , together
with the morphisms X•(d

n
i ) : Xn−1 −→ Xn and X•(s

n
i ) : Xn+1 −→ Xn, where dni and sni are the usual coface

and codegeneracy maps, respectively. Then by abusing the notation and omitting the codegeneracy maps, we
define the cosimplicial diagram in C by

X• =
(
X0
→→ X1

→→→ X2

→→→→
· · ·

)
. (2.1)

∗That is, a 2-category is a higher category, where on top of the objects and morphisms, there are also 2-morphisms.
†With a model structure, which was originally defined by Quillen, one can localize the given category C by formally inverting a

special class of morphisms, the weak equivalences, and define the homotopy category of C .
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In the case of Grpds , from [9, Corollary 2.11], we have the following result regarding the homotopy
limits of a cosimplicial diagram in Grpds , which will be useful to formulate the classical definition of stack in
the language of homotopy theory.

Lemma 2.5 (Homotopy limits in groupoids) Given a cosimplicial diagram X• in Grpds

X• =

(
X0
→→ X1

→→→ X2

→→→→
· · ·

)
,

where each Xi is a groupoid, then the homotopy limit holimGrpds(X•) of a cosimplicial diagram X• is a
groupoid for which

(i) objects are the pairs (x, h) , where x is an object in X0 , h : d11(x) → d10(x) is a morphism in X1 such
that

(a) s00(h) = idx, (2.2)

(b) d20 ◦ d22(h) = d21(h). (2.3)

Note that x and h can be realized as 0- and 1-simplicies in X•, respectively, such that, by using the
properties of dni and snj , those conditions correspond to the commutativity of the diagram

d22 ◦ d11(x) d22 ◦ d10(x) = d20 ◦ d11(x) d20 ◦ d10(x)

d21 ◦ d11(x) d21 ◦ d10(x);

“ = ”

d22(h) d20(h)

d21(h)

“ = ”

hence, we geometrically have

rd20 ◦ d10(x)

r
d22 ◦ d11(x)

r
d22 ◦ d10(x)

�
�
�
�
��

A
A
A
A

AA

d22(h)

d21(h) d20(h)
•

x

-

�

�
s00

Q
Q
Q

Q
QQ

h

d11(x)r
d10(x)r R

d21

(ii) morphisms are the arrows of pairs (x, h) → (x′, h′) that consist of a morphism f : x → x′ in X0 such
that the following diagram commutes.

d11(x) d11(x
′)

d10(x) d10(x
′)

h

d11(f)

d10(f)

h′

Here, dni ’s are in fact covariant functors between groupoids.
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Stacks as homotopy sheaves. Classically, stacks were defined either as categories fibered in groupoids or
lax presheaves satisfying the descent conditions.

Denote by PSh(C, Grpds) the category of presheaves of groupoids on C . Instead of the classical definitions
above, Hollander [9] first proved that it is enough to work with actual objects in PSh(C, Grpds) . Then it was
proven in [9] that the homotopy sheaf condition is equivalent to the descent conditions; hence, stacks can be
described as homotopy sheaves.

The desired sheaf condition is in fact based on the model structure on PSh(C, Grpds) . It has been shown
in [9] that there exists a suitable model structure on PSh(C, Grpds) such that stacks arise as the fibrant objects
in the model structure on PSh(C, Grpds) . More precisely, we have the following definitions/theorems [9]:

Definition 2.6 Let C be a category with a Grothendieck topology, a site. An object X ∈ PSh(C, Grpds) in the
model structure is fibrant if for each covering family {Ui → U} of U in C , the canonical morphism

X (U) −→ holimGrpds

(
X (U•)

)
(2.4)

is a weak equivalence in Grpds , where X (U•) is the cosimplicial diagram in Grpds

X (U•) :=

(∏
i

X (Ui)→→
∏
ij

X (Uij)→→→
∏
ijk

X (Uijk)
→→→→
· · ·

)
,

such that holimGrpds is the homotopy limit in Lemma 2.5; and Ui1i2...im is the fibered product of Uin ’s in U .

Definition 2.7 Let C be a site. A presheaf of groupoids X on C is called a stack if it is fibrant.

Example 2.8 (Manifolds as stacks) Denote by Cart the category of cartesian spaces, where an object is an
open subset of Rn that is diffeomorphic to Rn , and morphisms are smooth maps. To turn Cart into a site, we
use open covers for which every intersection of those open subsets Ui ’s in U is either empty or diffeomorphic
to Rn . Let C =Mann , the category of n-manifolds, then any manifold M can be considered as a functor

FM : Cartop → Sets ⊂ Grpds, U 7→ FM (U) := C∞(U,M),

where the set C∞(U,M) is a groupoid with objects being the elements of C∞(U,M) and morphisms being just
identities. Since C∞(−,M) is a sheaf on Cart , the functor F(−) :Mann → PSh(Cart,Grpds) is fully faithful
and takes values in stacks. Thus, manifolds can be seen as particular stacks. For details, see [3, §2.3].

Example 2.9 (Classifying stack of G -bundles) Given a Lie group G , define an object BG in PSh(Cart,Grpds)

as the functor BG : Cartop → Grpds, U 7→ BG(U) , such that BG(U) is a groupoid with one object {∗} and
morphisms are from C∞(U,G) . The composition in BG(U) is given as the pointwise product. Using similar
arguments as before, BG becomes a stack. For details, see [3, §2.3].

Example 2.10 (Quotient stacks) Let X be a stack and G a group object in stacks acting on X . Then we can
define the quotient stack of X by G as the following (homotopy) colimit of the simplicial diagram:

[
X/G

]
= colim

(
X ←← X ×G←←← X ×G×G

←←←←
· · ·

)
(2.5)

where the maps are given by the action and projection. When X = {∗} , the classifying stack in Example 2.9
can be recovered as BG = [{?}/G] with the simplicial diagram coming from the nerve of the groupoid BG({∗}) .

6



BERKTAV/Turk J Math

2.2. Overview of different formulations of 3D gravity
In this section, we briefly outline different formulations 3D Einstein gravity: the metric formalism; a geometric
description via model spacetimes; and the Cartan formalism. We also study infinitesimal symmetries (see
Appendix A) and a relation between 3D gravity and gauge theory. We essentially follow [6, 7, 14].

2.2.1. The metric formalism of 3D gravity and a geometrical description
Definition 2.11 Let M be a manifold. A classical field theory on M , in the sense of Lagrangian formalism,
consists of a piece of data (FM ,S, G; crit(S)) , where FM denotes the space of fields on the base manifold M ;
S is a smooth action functional on FM ; G is a certain group encoding the symmetries of the system; and
crit(S) is the critical locus crit(S) of S . We call the defining equations for crit(S) the field equations.

In the sense of Definition 2.11, 3D gravity with vanishing cosmological constant consists of the following
data. The metric tensor is the fundamental field of study. Given a 3-manifold M , we have G := ISO(M) ,
with the usual pullback action; and the Einstein-Hilbert action for the metric is given as

IEH [g] := κ

∫
M

dx3R
√
−det(g). (2.6)

Here, κ is some constant, R is the Ricci scalar, g is the metric tensor field, and det(g) denotes the determinant
of the metric tensor matrix. Then the vacuum Einstein field equations, with cosmological constant Λ = 0 , are
given as‡

Rµν −
1

2
gµνR = 0. (2.7)

Observe that after contracting with gµν , one has R = 0 . Therefore, from substituting this back into Equation
(2.7), we get Rµν = 0 . Then we introduce the following definition.

Definition 2.12 Denote by EH(M) the moduli space of solutions to the field equations above, then EH(M) is
the moduli space of Ricci-flat Lorentzian metrics on M (i.e. Rµν = 0).

Remark 2.13 It should also be noted that, Weyl tensor in 3D is identically zero. Thus, the curvature tensor of
a 3-manifold is determined completely by its Ricci tensor. Therefore, any solution of the vacuum Einstein field
equations (2.7) in 3D, with vanishing cosmological constant, is locally flat. In physics, we then say 3D gravity
is a theory without local gravitational degrees of freedom. It means it has curvature only where there is matter,
and there are no gravitational waves [11].

By Remark 2.13, the critical locus EH(M) can be seen as the moduli space of flat geometric structures
on M . We will not formally discuss the notion of a geometric structure in detail, but with this interpretation
in hand, one can equivalently say that for each vacuum solution g to 3D Einstein field equations, (M, g) is
locally modeled on (ISO(2, 1),R2,1 ), where R2,1 denotes the usual Minkowski spacetime. In fact, we have a
one-to-one correspondence (cf. [6])

ζ : EH(M) −→
{
(ISO(2, 1),R2,1) structures on M

}
. (2.8)

‡More generally, the Einstein-Hilbert action for gravity coupled to matter, with nonvanishing cosmological constant Λ is of the
form IEH [g] := κ

∫
M dx3(R−2Λ)

√
−det(g)+

∫
matter with a constant κ . Then the field equations are Rµν− 1

2
gµν(R−2Λ) = −ℓTµν

for some constant ℓ and Tµν the energy-momentum tensor.
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More precisely, the map (2.8) sends (equivalence classes) of flat Lorentzian metrics to the induced flat geometric
structure (ISO(2, 1),R2,1 ) on M . The converse map is clear since such structure carries a locally flat metric.
In this paper, we are mostly interested in Lorentzian vacuum 3D gravity with Λ = 0.

In general, the geometric description of (vacuum) 3D gravity can be given by (quotients of) certain model
spacetimes [6]. When Λ 6= 0 , the vacuum field equations are

Rµν = 2Λgµν . (2.9)

In that case, Remark 2.13 also implies that any vacuum solution to the Einstein equations with general
cosmological constant (2.9) will give a geometric structure of constant curvature. In this regard, the symmetry
groups of gravitational interest and the corresponding model spacetimes are as follows:

(G,XΛ) :=


(SO(3, 1), dSΛ), Λ > 0 (de Sitter)
(ISO(2, 1),R2,1), Λ = 0 (Minkowski)
(SO(2, 2), AdSΛ), Λ < 0 (Anti de Sitter),

(2.10)

where the stabilizer group in each case is the Lorentz group H = SO(2, 1) . We then introduce the following
definition.

Definition 2.14 (Geometric description for 3D gravity) Let Λ ∈ R and M be a base manifold. A Lorentzian
(vacuum) 3D gravity for Λ is a classical field theory on M in the sense of Definition 2.11 such that the space
EH(M,Λ) of vacuum solutions to 3D Einstein field equations is equivalent to the space of geometric structures
on M w.r.t the models in (2.10). Note that when Λ = 0 , we have the map ζ in (2.8) and EH(M, 0) =: EH(M) .

Note that the geometric description of 3D gravity in Definition 2.14 is in fact an example of Thurston’s
geometric structures in the case of a (ISO(2, 1),R2,1) structure [6]. In general, a (G,X) -manifold is an n -
dimensional manifold M locally modeled on X , the model space equipped with a G -action, just as an ordinary
manifold is modeled on Rn equipped with a GLn -action. For details, we refer to [6, 7].

2.2.2. The first-order formalism of 3D gravity
The action functional of gravity was originally given as a functional on the space of Lorentzian metrics as we
introduced in subsection 2.2.1. Later, it was shown that the action may alternatively be given in a more general
form as a functional on the space of connections with values in the Poincaré Lie algebra iso(2, 1) . This version
is called the Eintein-Cartan gravity, which also has the advantage of being interpreted as a gauge theory. In
what follows, we discuss the basics of Eintein-Cartan gravity in the context of Cartan geometry.

Some background material on Cartan geometry can be found in [16]. For the gravitational interpretation,
let us assume w.l.o.g that the underlying 3-manifold M has a topology of the form R × Σ, with Σ a closed
oriented surface, and G = ISO(2, 1) = SO(2, 1)⋉R2,1 . Then we have the following definition.

Definition 2.15 Let M,G be as above. The Eintein-Cartan theory of gravity for the pair (M,G) consists
of a G-frame bundle LM

π−→ M over M , a Cartan connection A ∈ Ω1(LM, iso(2, 1)), and the action in
(2.11), such that A is expressed uniquely as a decomposition A = ω + e, where ω ∈ Ω1(LM, so(2, 1)) is the
so(2, 1)-valued Ehresmann 1-form on LM (the spin connection) and e ∈ Ω1(LM,R2,1) is the coframe field (or
triad).

8
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The Einstein-Hilbert action in triad-spin-connection language can be defined as

I ′EH [e, ω] =

∫
M

ea ∧
(
dωa +

1

2
εabcω

b ∧ ωc
)
. (2.11)

Here ea = eaµdx
µ and ωa = 1

2ε
abcωµbcdx

µ , where µ, ν, . . . label the space indices with respect to a local chart;
and the others a, b, . . . are the Lorentz indices. Let P a and Ja , for a = 0, 1, 2 , be the generators of iso(2, 1)
corresponding to translations and Lorentz generators, respectively, with the structure relations

[Ja, Jb] = εabcJc, [Ja, Jb] = εabcPc, [P a, P b] = 0.

Then we can write ω = ωaJa and e = eaPa such that A = ω + e . Notice that the action (2.11) is invariant
under both local SO(2, 1) transformations

δea = εabcebτc and δωa = dτa + εabcωbτc, (2.12)

and local translations
δea = dρa + εabcωbρc and δωa = 0. (2.13)

Now, Einstein field equations in triad-spin-connection language are obtained as

T a = deb + εabcωb ∧ ec = 0, (2.14)

Ω[ω]a = dωa +
1

2
εabcωb ∧ ωc = 0. (2.15)

It means any vacuum solutions to Einstein field equations must have vanishing torsion and curvature. In fact,
these equations have the following consequences [6, 7]:

1. The triad can be used to define a Lorentzian metric g(e) via g(e)µν = eaµe
b
νηab and g(e)µνeaµe

b
ν = ηab,

where η denotes the usual Minkowski metric.

2. We can obtain ω as a function ω[e] of e by solving Equation (2.14). If we substitute ω[e] into Equation
(2.15), the resulting equations will be equal to the ordinary vacuum Einstein field equations Rµν [g(e)] = 0

for the Lorentzian metric g(e) defined by the triad. As discussed before, such metrics in 3D are flat.
Therefore, the space of solutions to the field equations for I ′EH [e, ω] can thus be identified with the set of
flat Lorentzian metrics on M .

3. (3D gravity as a Chern-Simons gauge theory) It has been shown in [17] that the pair (e, ω) can
be combined into an actual gauge field A , a Lie algebra-valued connection 1-form, with the gauge group
ISO(2, 1) . Note that using the generators P a, Ja of iso(2, 1) , for a = 0, 1, 2 , given as above, we can
define an invariant nondegenerate bilinear form 〈·, ·〉 on iso(2, 1) by

〈Ja, Pb〉 = ηab 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0,

and introduce the gauge field A as A := Pae
a + Jaω

a. [17] shows that the action in (2.11) is equal to the
Chern-Simons action ICS for A , with the gauge group G = ISO(2, 1) and the bilinear form 〈·, ·〉 above,
where

ICS [A] =
∫
M

〈A, dA+
2

3
A ∧A〉. (2.16)

9
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The gauge group acts naturally on the space of ISO(2, 1) -connections: For ρ ∈ G and a connection A ,
we have A • ρ := ρ−1 ·A · ρ+ ρ−1 · dρ. The corresponding field equation in this case turns out to be

FA = dA+A ∧A = 0.

In brief, the field equations now reduce to the requirement for A to be flat, and the gauge transfor-
mations (2.12)–(2.13) can be identified with standard ISO(2, 1) transformations. Note that spacetime
diffeomorphisms do not correspond to independent gauge symmetries. Let us explain the situation.

Remark 2.16

1. I ′EH [e, ω] is also invariant under the action Diff(M) . But, it has been shown by Witten in [17] that
diffeomorphisms in the connected component of the identity are equivalent to transformations combining
local Lorentz transformations and local translations mentioned above. In other words, when we identify the
phase space of 3D gravity with that of the associated 3D Chern-Simons theory, infinitesimal Chern-Simons
gauge transformations are equivalent to infinitesimal diffeomorphisms.

2. The aforementioned equivalence does not hold for “large” diffeomorphisms, i.e. those are not infinitesimally
generated. Large diffeomorphisms in fact require different treatment, and they are important for the
quantum theory [11]. Therefore, when we discuss an equivalence between some transformations, we always
consider them “infinitesimally generated”. (See also Appendix A.)

2.2.3. Equivalence of 3D gravity with gauge theory
In this section, we will establish a relation between a Lorentzian 3D gravity on M for Λ = 0 and the space
of gauge-equivalence classes of flat ISO(2, 1) -connections on M . For simplicity, assume also that M has a
topology of the form Σ× R , with Σ a closed oriented surface.

Observe that given a Lorentzian 3D gravity on M with Λ = 0 , there is an induced map

ϕ : EH(M) −→Mflat,Σ,ISO(2,1), (2.17)

sending a (equivalence class of) flat Lorentzian metric [g] to the corresponding (equivalence class of) flat gauge
connection, denoted by [Ag] . For details, see Appendix B and the composition (B.4).

The moduli space Mflat,Σ,ISO(2,1) in (2.17) can be seen as the phase space of the Chern-Simons gauge
theory, with gauge group ISO(2, 1) . As we discussed in subsection 2.2.2, this theory can be equivalently
obtained by using the first order formulation of 3D gravity in the language of triad-spin-connection. In that
case, a flat connection on the frame bundle of M is determined by its holonomies; and holonomies are determined
by (ISO(2, 1),R2,1) -structures, etc. (see Appendix B). Thus, our previous constructions fit into the current
discussion.

Remark 2.17 There is a more general version of the map ϕ in (2.17), denoted by

ϕΛ : EH(M,Λ) −→Mflat,Σ,GΛ
, (2.18)

where GΛ is one of the symmetry groups in (2.10). That is, any (equivalence class of) vacuum solution [g]

(either flat or of constant curvature) of the Einstein equations determines a (class of) flat GΛ -connection [Ag] .
This is because the composition (B.4) will still be valid for any symmetry group in (2.10) and any manifold
topologically of the form Σ× R , with Σ a closed oriented surface.

10
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Note also that the map ϕΛ in (2.18) relates the vacuum 3D gravity for the pair (M,GΛ) to the Chern-
Simons theory with the gauge group GΛ . However, we end up with the following question: Are the resulting
theories equivalent (in some sense)? This leads to the following definition.

Definition 2.18 We say that 3D gravity is equivalent to gauge theory in the sense of the canonical formalism
if the map ϕΛ in (2.18) is an isomorphism§.

Remark 2.19 It should be noted that ϕΛ need not to be invertible in the first place. We may have two possible
approaches to that problem.

1. If we adopt the first order formalism in subsection 2.2.2, the map ϕΛ in (2.18) happens to be invertible if
every such flat connection can be transformed into a form in which the triad is invertible (uniquely up to
a diffeomorphism/local Lorentz transformation) [18, §6.1].

2. If we adopt the geometric description in subsection 2.2.1, we then ask whether the holonomy group of a
(G,X) structure is sufficient to determine a geometry. The answer is no, in general. But there are some
positive answers. In fact, we address this issue in Remark B.1.

In this regard, combining the terminology in Definition 2.18 with [13, Prop. 2] (cf. Thm. B.2), we get the
following important result, which will be central for us in §3.3.

Theorem 2.20 For vacuum Einstein gravity on M = Σ × (0,∞) , with Λ = 0 , and Σ a closed Riemann
surface of genus g > 1 , there exists an equivalence of gravity with gauge theory in the sense of Definition
2.18. In that case, the map ϕΛ in (2.18) reduces to the map ϕ in (2.17), and hence we have the identification
EH(M) 'Mflat,Σ,ISO(2,1).

3. Proofs of the main results
In what follows, we give more explanations about the contents of Theorems 1.1, 1.2, and 1.3 and the proofs of
these results.

3.1. Proof of Theorem 1.1
In this section, we will present the proof of Theorem 1.1. Inspired by [3], we first prove the following result
encoding the prestacky part of the construction of interest.

Lemma 3.1 Given a Lorentzian n-manifold M , let C be the category of open subsets of M that are diffeo-
morphic to Rn , with morphisms being canonical inclusions between open subsets whenever U ⊂ V . Then the
functor E : Cop → Grpds described below is a prestack.

1. The action of E on the objects of C. For each object U of C , we have a groupoid E(U) of Ricci-flat
pseudo-Riemannian metrics on U , where objects of E(U) form the set

FMet(U) :=
{
g ∈ Γ(Sym2(T ∗U)) : Ric(g) = 0

}
.

§We could have asked for the invertibility of the map (B.5) with a general 3-manifold M , instead. But in 3D gravity, we mostly
consider M = Σ× R with Σ a closed oriented surface; hence, the map (B.5) reduces to φΛ .

11
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Morphisms in E(U) . Let Aut(Sym2(T ∗U)) be the group of automorphisms of the bundle Sym2(T ∗U)

over U , and ·ϕ denotes the action of ϕ on the sections. We may sometimes use ϕ∗ for the action as well
because of the natural motivation coming from the pulling-back operation.

By the action of ϕ , we mean that ϕ is a bundle isomorphism making the diagram

Sym2(T ∗U) Sym2(T ∗U)

U

ϕ

ππ
g g′

commute such that it acts on each fiber isomorphically; that is, for each p ∈ U there is an isomorphism
ϕp : Sym

2(T ∗
pU)

∼−→ Sym2(T ∗
pU) such that

g′p = ϕp(gp). (3.1)

In the context of GR, we consider particular automorphisms that are induced from infinitesimal diffeo-
morphisms of the underlying spacetime. Following Remarks A.1 and 2.16, we consider the infinitesimal
diffeomorphisms acting on the metric g as

gµν(p) −→ gµν(p) + LXgµν(p),

where X ∈ Γ(TU) is a vector field over U , p ∈ U , and LX is the Lie derivative operator along X . Here,
LXg serves as a variation δg of g as in Remark A.1.

Since any combinations of infinitesimal diffeomorphisms are also meaningful for our construction, consid-
ering the C∞ -module generated by these infinitesimal generators over U , we formally define

L(U) =
⟨
LX : [LX ,LY ] = L[X,Y ], X, Y ∈ Γ(TU)

⟩
(3.2)

as an algebra over C∞(U). Then we also have the following definition.

Definition 3.2 Let g ∈ E(U) . By an infinitesimal diffeomorphism ϕ , we mean a transformation
determined by an element ϕ̂ ∈ L(U) such that for each p ∈ U , g transforms under this infinitesimal
diffeomorphism as

gµν(p)
φ−→ gµν(p) + ϕ̂(gµν)(p). (3.3)

In this case, we also use ·ϕ to denote the action of this infinitesimal transformation on the space of
metrics. As mentioned before, if gµν satisfies the corresponding Einstein field equations, so does its
variation gµν · ϕ.

Definition 3.3 We define a morphism g → g′ in E(U) if there exists an infinitesimal diffeomorphism ϕ

such that g′ = g · ϕ . Then the set of morphisms is given by

HomE(U)(g, g
′) =

{
ϕ ∈ Aut(Sym2(T ∗U)) : g′ = g · ϕ in E(U)

}
.

12
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We denote a morphism g → g′ in HomE(U)(g, g
′) by (g, ϕ) or just by ϕ if the meaning is clear from the

context. It is also clear from the construction that all morphisms in HomE(U)(g, g
′) are invertible.

Compositions in E(U) . Given two morphisms g ψ−→ g′ and g′
φ−→ g′′ in E(U) , using Equation (3.3), the

composition of two morphisms is given as the standard composition

(g · ψ) · ϕ : g → g′′,

where ϕ̂, ψ̂ ∈ L(U) representing the corresponding operators. More precisely, w.l.o.g, we assume ϕ̂ ≡ LX
and ψ̂ ≡ LY for some vector fields X,Y on U . Then one obtains

g′′µν(p) = g′µν(p) · ϕ

= g′µν(p) + LXg′µν(p)

= gµν(p) + LY gµν(p) + LX
(
gµν(p) + LY gµν(p)

)
= gµν(p) +

(
LY + LX + LXLY

)
gµν(p),

where
(
LY + LX + LXLY

)
∈ L(U) , and we get a morphism g → g′′ represented by the element

ψ + ϕ + (ϕ ◦ ψ) . Following our notation, we use “ϕ ◦ ψ” to represent the composition, by which we
mean g · (ϕ ◦ ψ) = (g · ψ) · ϕ.

2. The action of E on the morphisms in C. To each morphism U
f−→ V in C , it assigns a functor of

categories E(f) : E(V )→ E(U), whose action on both objects and morphisms of E(V ) is given as follows.

(a) For any object g ∈ Ob(E(V )) = FMet(V ) , we set g E(f)−−−→ f∗g, where

f∗g = g ◦ f = g|U ∈ FMet(U).

Notice that the pullback of a Ricci-flat metric, in general, may no longer be Ricci-flat. But, in the
case of particular canonical inclusions f : U ↪→ V , with U, V open subsets, if a metric g is Ricci-flat
on V , so is f∗g on U . This is because f∗g is just the restriction g|U of g to the open subset U .

(b) For any morphism (g, ϕ) ∈ HomE(V )(g, g
′) , by the definition of ϕ , there exists an isomorphism

gµν(p) → g′µν(p) = gµν(p) + ϕ̂(gµν)(p) for all p ∈ U ⊂ V as well. Therefore, due to the fiberwise

action given in Equation (3.3), ϕ induces an isomorphism ϕp : Sym2(T ∗
pU)

∼−→ Sym2(T ∗
pU) , and

hence a subbundle isomorphism. Thus, we get the desired transformation over the smaller open
subset U in V . We denote this induced isomorphism by ϕ|U (or f∗ϕ), and write(

g
∼−−−→

(g,φ)
g′
)

E(f)−−−→
(
g|U

∼−−−−−−→
(g|U ,φ|U )

g′|U
)
.

3. Given a composition of morphisms U f−→ V
h−→ W in C , there exists an invertible natural transformation

(arising naturally from properties of the action)

ϕh◦f : E(h ◦ f)⇒ E(f) ◦ E(h),

together with the compatibility condition.

13
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Proof of Lemma 3.1. It is enough to prove the following two statements:

(i) Given a composition of morphisms in C

U V W ,

h ◦ f

f h

there is an invertible natural transformation

E(W ) E(U).

E(h ◦ f)

E(f) ◦ E(h)

ψh,f

(ii) Given a composition of morphisms U f−→ V
h−→W

p−→ Z in C , the associativity condition holds in the sense
that the following diagram commutes:

E(p ◦ h ◦ f) E(h ◦ f) ◦ E(p)

E(f) ◦ E(p ◦ h) E(f) ◦ E(h) ◦ E(p)

ψp◦h,f

ψp,h◦f

idE(f) ⋆ ψp,h

ψh,f ⋆ idE(p)

Proof of (i). First, we need to analyze objectwise: For any object g ∈ FMet(W ) , we have the following strong
condition by which the rest of the proof will become rather straightforward.

E(h ◦ f)(g) = (h ◦ f)∗g = f∗h∗g =
(
E(f) ◦ E(h)

)
(g) ∈ FMet(U). (3.4)

As we have identical metrics E(h ◦ f)(g) = E(f) ◦ E(h)(g) for any g ∈ FMet(W ) , there is, by construction, a
unique identity morphism

(
E(h ◦ f)(g), id

)
∈ HomFMet(U)

(
E(h ◦ f)(g), E(f) ◦ E(h)(g)

)
such that

E(h ◦ f)(g) ∼−−−−−−−−−→(
E(h◦f)(g),id

) E(f) ◦ E(h)(g) = (
E(h ◦ f)(g)

)
· id = E(h ◦ f)(g).

Thus, one has the natural choice of a collection of morphisms{
mg : E(h ◦ f)(g) −→ E(f) ◦ E(h)(g)

}
,

where mg =
(
E(h ◦ f)(g), id

)
for all g ∈ FMet(W ) .

14
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Just for the sake of notational simplicity, we let

F := E(h ◦ f) and G := E(f) ◦ E(h).

Then for each morphism g
∼−−−→

(g,φ)
g′ in E(W ) , we get

F((g, ϕ)) = E(h ◦ f)((g, ϕ))

=
(
(h ◦ f)∗g, (h ◦ f)∗ϕ

)
=

(
f∗ ◦ h∗(g), f∗ ◦ h∗(ϕ)

)
=

(
E(f) ◦ E(h)(g), f∗ ◦ h∗(ϕ)

)
= E(f) ◦ E(h)((g, ϕ))

= G((g, ϕ)).

The computation above implies the commutativity of the diagram.

F(g) F(g′)

G(g) G(g′)

mg

F((g, φ))

G((g, φ))

mg′

Furthermore, it is clear from Equation (3.4) and from the construction that ψh,f : E(h◦ f)⇒ E(f)◦E(h)
is in fact invertible. In other words, we have E(h ◦ f) ∼= E(f) ◦ E(h) up to invertible natural transformation.

This completes the proof of (i).

Proof of (ii). If U f−→ V
h−→W in C is a composition, then we have

(1) F(g) = G(g) for any g ∈ Ob(E(W )), (3.5)

(2) F((g, ϕ)) = G((g, ϕ)) for any g ∼−−−→
(g,φ)

g′ in E(W ), (3.6)

where F := E(h ◦ f) and G := E(f) ◦ E(h) .

Now, let U
f−→ V

h−→ W
p−→ Z be a composition of morphisms in C , then it suffices to show that the

associativity condition holds both objectwise and morphismwise.

• Let g ∈ Ob(E(Z)) , then we have

E(p ◦ (h ◦ f))(g) = E(h ◦ f) ◦ E(p)(g) from Eq.(3.5) with ψp,h◦f

= E(f) ◦ E(h) ◦ E(p) from Eq.(3.5) with ψh,f ? idE(p)

= E(f) ◦ E(p ◦ h)(g) from Eq.(3.5) with idE(f) ? ψp,h

= E((p ◦ h) ◦ f)(g) from Eq.(3.5) with ψp◦h,f

This gives the commutativity of the diagram objectwise.
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• Let g ∼−−−→
(g,φ)

g′ in E(Z) , then we have

E(p ◦ (h ◦ f))((g, ϕ)) = E(h ◦ f) ◦ E(p)((g, ϕ)) from Eqn.(3.6) with ψp,h◦f

= E(f) ◦ E(h) ◦ E(p)((g, ϕ)) from Eqn.(3.6) with ψh,f ? idE(p)

= E(f) ◦ E(p ◦ h)((g, ϕ)) from Eqn.(3.6) with idE(f) ? ψp,h

= E((p ◦ h) ◦ f)((g, ϕ)) from Eqn.(3.6) with ψp◦h,f .

This completes the proof of (ii) , and hence that of Lemma 3.1.

□

Let E : Cop → Grpds be the prestack defined in Lemma 3.1. Now, introducing a suitable site structure
on C , we give the proof of Theorem 1.1.

Proof of Theorem 1.1. As in the case of [3], we first endow C with an appropriate Grothendieck topology
τ by defining the covering families {Ui → U} of U in C to be “good” open covers {Ui ⊆ U} meaning that the
fibered products Ui1i2...im := Ui1 ×U Ui2 ×U · · · ×U Uim corresponding to the intersection of those open subsets
Ui ’s in U are either empty or open subsets diffeomorphic to Rn . Here each morphism Ui ↪→ U is the canonical
inclusion (and hence a morphism in C ).

Let U be an object in C . Given {Ui ⊆ U} a covering family for U , one has the following cosimplicial
diagram in Grpds

E(U•) :=

(∏
i

E(Ui)→→
∏
ij

E(Uij)→→→
∏
ijk

E(Uijk)
→→→→
· · ·

)
,

where Ui1i2...im denotes the fibered product of Uin ’s in U as above. Note that for a family

{gi} in
∏
i

E(Ui),

where E(Ui) = FMet(Ui) , the coface maps d10 and d11 correspond to the suitable restrictions of each component
gi|Uij

and gj |Uij
, respectively.

Now, it follows from the Lemma 2.5 that holimGrpds(E(U•)) is indeed a particular groupoid and can be
defined as follows.

1. Objects are the pairs (x, h) , where x := {gi} ∈
∏
i E(Ui). That is, it is a family of Ricci-flat pseudo-

Riemannian metrics on Ui ’s, along with the diagram

r{gk|Uijk}

r
{gi|Uijk}

r
{gj |Uijk}

�
�
�
�
��

A
A
A
A

AA

φij

∃ φjk

•
{gi}

-

�

Q
Q
Q

Q
QQ

∼

{gi|Uij}r
{gj |Uij}r R

d21
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where gj |Uij = gi|Uij · ϕij for some ϕij ∈ Aut(Sym2(T ∗Uij)). The “triangle” on the RHS of the diagram
above implies that for all i, j, k , we have

gk|Uijk
= gj |Uijk

· ϕjk

= (gi|Uijk
· ϕij) · ϕjk

= gi|Uijk
· (ϕjk ◦ ϕij). (3.7)

It means that there exists a morphism ϕik : gi|Uijk

∼−→ gk|Uijk
. Therefore, we define the morphism h in∏

E(Uij) as a family{
gi|Uij

∼−−−−−−−→
(gi|Uij

,φij)
gj |Uij

: gj |Uij
= gi|Uij

· ϕij & ϕij ∈ Aut(Sym2(T ∗Uij))
}
,

where gk|Uijk
= gi|U(Uij

· (ϕjk ◦ ϕij) and s00(h) : {gi} → {gi} , which is just the identity morphism.

As a remark, the conditions in the definition of the family {h} correspond to those in Lemma 2.5 (Eqs.
(2.2) and (2.3)). Therefore, an object of holimGrpds(E(U•)) is of the form

(x, h) =
(
{gi ∈ FMet(Ui)}, {ϕij ∈ Aut(Sym2(T ∗Uij))}

)
, (3.8)

where {gi} is an object in
∏
E(Ui) , and for each i, j , ϕij := (gi|Uij

, ϕij) is a morphism in
∏
E(Uij)

satisfying

(i) gj |Uij
= gi|Uij

· ϕij , with ϕij ∈ Aut(Sym2(T ∗Uij)),

(ii) On Uijk, ϕij ◦ ϕjk = ϕik (the cocycle condition),

(iii) s00(h) : {gi} → {gi}, the identity morphism.

In short, an object g :=
(
{gi}, {ϕij}

)
in holimGrpds(E(U•)) is a collection {gi} of Ricci-flat metrics over

covering open subset Ui of U , together with the transition maps {ϕij} on the overlaps that satisfy the
cocycle condition above.

2. A morphism (x, h)→ (x′, h′) in holimGrpds(E(U•)) consists of the following data:

(a) A morphism x
f−→ x′ in

∏
E(Ui) , such that {gi}

∼−→ {g′i}, where gi, g′i ∈ FMet(Ui) with g′i = gi · ϕi
for some ϕi ∈ Aut(Sym2(T ∗Ui)).

(b) For each i, j , a commutative diagram

gi|Uij
g′i|Uij

gj |Uij
g′j |Uij

h = φij

φi|Uij

φj |Uij

h′ = φ′
ij

(3.9)
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In fact, it follows from the fact that gj |Uij = gi|Uij · ϕij and g′j |Uij = g′i|Uij · ϕ′
ij , we have(

gi|Uij · ϕi|Uij

)
· ϕ′

ij = g′j |Uij
.

On the other hand, one also has (
gi|Uij · ϕij

)
· ϕj |Uij = g′j |Uij ,

which imply the commutativity of the diagram; hence, one can also deduce the following relation:(
gi|Uij

· ϕij
)
· ϕj |Uij

=
(
gi|Uij

· ϕi|Uij

)
· ϕ′

ij ∀i, j

⇐⇒

gi|Uij ·
(
ϕj |Uij ◦ ϕij

)
= gi|Uij ·

(
ϕ′
ij ◦ ϕi|Uij

)
∀i, j

⇐⇒

ϕ′
ij = ϕj |Uij ◦ ϕij ◦ ϕ−1

i |Uij ∀i, j

Thus, a morphism in holimGrpds(E(U•)) from g =
(
{gi}, {ϕij}

)
to g′ =

(
{g′i}, {ϕ′

ij}
)

is a family

{
ϕi ∈ Aut(Sym2(T ∗Ui)) : g

′
i = gi · ϕi & ϕ′

ij = ϕj |Uij ◦ ϕij ◦ ϕ−1
i |Uij

}
(3.10)

In short, a morphism φ : g → g′ in holimGrpds(E(U•)) is a collection {ϕi} of morphisms, with
ϕi ∈ MorE(Ui)(gi, g

′
i) , such that the action is compatible with the corresponding transition maps in the sense

of Diagram 3.9.
Now, for a covering family {Ui ⊆ U} of U , the canonical morphism

Ψ : E(U) −→ holimGrpds(E(U•)) (3.11)

is defined as a functor of groupoids, where

• for each object g in FMet(U) , g
Ψ−→

(
{g|Ui}, {ϕij = id}

)
, together with the trivial cocyle condition.

• for each morphism g
∼−−−→

(g,φ)
g · ϕ , with ϕ ∈ Aut(Sym2(T ∗U)) , it assigns

(
g

∼−−−→
(g,φ)

g · ϕ
) Ψ−→

(
{ϕi := ϕ|Ui}

)
,

where ϕ|Ui trivially satisfies the desired relation (3.10) for being a morphism in holimGrpds(E(U•)) .

Lemma 3.4 Ψ is a fully faithful and essentially surjective functor.

Proof Ψ is essentially surjective: Let g :=
(
{gi}, {ϕij}

)
be an object in holimGrpds(E(U•)) . Then we

have a family of objects {gi} , with the family of transition functions {ϕij} satisfying the cocycle condition
ϕij ◦ ϕjk = ϕik on Uijk , such that gj |Uij

= gi|Uij
· ϕij .
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We need to show that these are patched together to form a metric g ∈ FMet(U) . In fact, our site
structure on C consists of good covers for which the intersection of open subsets Ui ’s in U are either empty
or open subsets diffeomorphic to Rn . Also, Sym2(T ∗U) is a locally free sheaf over U . In this regard, the
following fact is useful: All cocycles are trivializable on manifolds diffeomorphic to Rn . Therefore, we conclude
that {ϕij = id} for all i, j .

Now, we have a trivial cocycle condition with ϕij = id . It follows that gi is a section of the sheaf
Sym2(T ∗Ui) over Ui satisfying gj |Uij

= gi|Uij
for all i, j . So, gi ’s are glued together by transition functions

ϕij , along with the trivial cocycle condition, to form g ∈ FMet(U) so that g|Ui
= gi and ϕ|Ui

= ϕi for all i.
Therefore, Ψ is essentially surjective.

Ψ is fully faithful: We need to show that the induced map

Ψ : HomE(U)(g, g
′) −→ HomholimGrpds(E(U•))(Ψ(g),Ψ(g′))

is a bijection of sets. To this end, we consider the corresponding sheaf-Hom Hom(S,S ′) , with S = S ′ =

Sym2(T ∗U) , where Hom(S,S ′) is the collection of the data Hom(S,S ′)(V ) := Mor(S|V ,S ′|V ). Here S|V
denotes the restriction of the sheaf to the open subset V ⊂ U . Then, both injectivity and surjectivity of Ψ

follow from the fact that the sheaf-Hom Hom(S,S ′) is a sheaf over U . Let us explain the details below.
If we assume Ψ(ϕ) = id , then it means, by definition, ϕi := ϕ|Ui = id for all i . By construction, it

implies that each ϕ|Ui
∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(Ui) . Because sheaf-Hom is a sheaf over U , we obtain

ϕ = id , and hence injectivity of Ψ .
Now, let φ : Ψ(g) → Ψ(g′) be a a morphism in holimGrpds(E(U•)) . Then it can be viewed as a

collection {ϕi} of morphisms such that the action is compatible with the corresponding transition maps in
the sense of Diagram 3.9. Here both Ψ(g) and Ψ(g′) are collections of Ricci-flat metrics {g|Ui

} and {g′|Ui
} ,

respectively, along with the trivial transition maps. Therefore, Diagram 3.9 with ϕij = ϕ′
ij = id implies that

ϕj |Uij
= ϕi|Uij

, where each ϕi ∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(Ui) . Because sheaf-Hom is a sheaf over U ,
we conclude that there exists ϕ ∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(U) such that ϕ|Ui

= ϕi . Equivalently, it
means ϕ ∈ HomE(U)(g, g

′) , with Ψ(ϕ) = {ϕi} . This proves the desired surjectivity and completes the proof.
2

From Lemma 3.4, we conclude that the canonical morphism Ψ in Equation (3.11) is a weak equivalence
in Grpds , and this completes the proof of Theorem 1.1. Then we obtain the following definition.

Definition 3.5 The stack E : Cop → Grpds constructed above is called the moduli stack of solutions to the
vacuum Einstein field equations on M , with Λ = 0 . We sometimes call it directly the stack of Einstein gravity.

3.2. Proof of Theorem 1.2
In this section, we provide a sketch of the proof of Theorem 1.2. In fact, after fixing our notation and giving
the explicit definitions, the result follows from Theorem 1.1 with some natural modifications.

Note also that in the proof of Theorem 1.1, morphisms in the source category are all canonical inclusions,
and hence pullbacks of (Ricci-flat) metrics by these morphisms are just restrictions to some smaller open subsets,
and hence still Ricci-flat. Therefore, for a “family version” of this category, (fiberwise) open embeddings can
be viewed as suitable substitutes.
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Moreover, we require our geometric structure (Lorentzian, Ricci-flat) to vary in families parametrized
over cartesian spaces¶. Therefore, throughout this subsection, we work with sheaves on the site Famn of
families of manifolds with n -dimensional fibers, together with fiberwise open embeddings. More precisely, we
have the following definition.

Definition 3.6 Let Famn be the site, where an object, denoted by M/U , is a submersion π : M → U with
n-dimensional fibers and U an object in Cart , and a morphism M/U →M ′/U ′ is a smooth bundle map that
is a fiberwise open embedding.

Moreover, the site structure is determine by the covering families that are a collection of morphisms
{Mi/Ui →M/U} such that {Mi} is an open cover of M.

A sketch of the proof of Theorem 1.2. Denote by Efam the presheaf on Famn

Famop
n −→ Grpds, M/U 7→ Efam(M/U),

where Ob(Efam(M/U)) := {g ∈ Γ(Sym2(T ∗(M/U))) : Ric(g) = 0} .
Here T ∗(M/S) is the relative cotangent bundle T ∗(M/U) = Coker(T ∗U → T ∗M) , which allows us

to define fiberwise versions (or “families”) of many familiar structures. Indeed, we are currently interested in
(pseudo) Riemannian structures.

In this regard, a pseudo-Riemannian metric g on M/U is a section of the relative bundle Sym2(T ∗(M/U)).

In other words, for an object π :M → U in Famn , g is a (Ricci-flat) pseudo-Riemannian metric on the vertical
tangent bundle ker(π∗) ⊂ TM . Thus, for any parameter u ∈ U and p ∈ Mu := π−1(u) , g|p is a metric on
ker(π∗,p) ⊂ TpM .

Using the fact that an object of Efam(M/U) is a (Ricci-flat) pseudo-Riemannian metric on the vertical
tangent bundle ker(π∗) ⊂ TM , morphisms in the groupoid Efam(M/U) can be defined via particular automor-
phisms of Sym2(T ∗(M/U)) induced by infinitesimal transformations as in Lemma 3.1. Likewise, composition
can be defined by using similar arguments in Lemma 3.1.

Functoriality follows from the fiberwise nature of the current construction. Given a map F : N/V →M/U

in Famn , we have a commutative diagram

N M

V U

πV

F

f

πU

such that for each v ∈ V , Fv : Nv →Mf(v) is an open embedding. If g is a Ricci-flat metric on T (M/U) , so is
its pullback under fiberwise open embeddings. Therefore, using the diagram above, F ∗g gives a Ricci-flat metric
on T (N/V ) , and hence an object in Efam(N/V ). Likewise, a morphism ϕ in Efam(M/U) can be pulled-back
via F , and due to the fiberwise action of the morphisms, F ∗ϕ gives a morphism in Efam(N/V ). The other
compatibility conditions are straightforward to check by following similar arguments in Lemma 3.1.

¶More details on geometric structures via stacks and on geometries in families can be found in [12]
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Finally, one can achieve the stackification of the prestack Efam by following more or less the same
arguments in the proof of Theorem 1.1 “fiberwisely”, with some modifications (using families, fiberwise open
embeddings, and the site structure above, etc.).

3.3. Proof of Theorem 1.3
As discussed in subsection 2.2.3, we say that there is an equivalence between 3D gravity and gauge theory if the
phase spaces of gravity and the associated gauge theory can be identified (cf. Definition 2.18). In fact, Mess
proved in [13] that this equivalence occurs for a particular setup (cf. Remark 2.19, Theorem 2.20).

Now, we would like to show that once it exists, the equivalence induces a morphism between the
corresponding stacks. To this end, we shall first revisit [3] and introduce a particular stack similar to BGcon

given in [3, Example 2.11]. This helps us to extend the moduli space Mflat,M,G of flat G -connections to a
nontrivial stack, denoted by M . Later on, we provide the desired natural 2-morphism Φ :M⇒ E in (3.13).

The stack of flat connections. We first need to introduce the “flat” counterpart of the classifying stack
BGcon . Just for simplicity, we again use M for the flat case whose construction is the same as that of BGcon .
Keep also in mind that for the gravitational interpretation (with Λ = 0), one requires to consider the case of
G = ISO(2, 1) . In this regard, we start with the following lemma.

Lemma 3.7 Let C be the category in Lemma 3.1 such that M is a Lorentzian 3-manifold of the form Σ× R
with Σ a closed Riemann surface of genus g > 1 . The functor M : Cop → Grpds defined below is a stack.

1. For each object U of C , M(U) is a groupoid of flat G-connections on U , where objects are the elements
of the set Ω1(U, g)flat of Lie algebra-valued 1-forms on U , with FA = 0 , and morphisms form the set
HomM(U)(A,A

′) = {ρ ∈ G : A′ = A • ρ}, where the action of the gauge group on Ω1(U, g)flat is defined
as follows: Over U , for all ρ ∈ G = C∞(U,G) and A ∈ Ω1(U, g)flat , we set A • ρ := ρ−1 ·A · ρ+ ρ−1 ·dρ.

We denote a morphism A
∼−→ A′ = A • ρ in HomM(U)(A,A

′) by (A, ρ) , or just by ρ when the meaning
is clear from the context.

The composition A
(A,ρ)−−−→ A • ρ (A•ρ,σ)−−−−−→ A • ρ • σ = A • (ρσ) is given by (A, ρσ) , with σ ◦ ρ := ρσ.

2. To each morphism U
f−→ V in C , i.e. f : U ↪→ V with U ⊂ V , one assigns M(V )

M(f)−−−−→ M(U). Here
M(f) is a functor of categories whose action on objects and on morphisms of M(V ) is given as follows.

(a) For any object A ∈ M(V ) = Ω1(V, g)flat , we have M(f) : A 7→ f∗A (= A|U ). Here we use the fact
that the pullback under f (indeed the restriction to an open subset U in our case) of a flat connection
is also flat.

(b) For any morphism (A, ρ) ∈ HomM(V )(A,A
′) with ρ ∈ G = C∞(V,G) such that A′ = A • ρ , it

follows from the fact that
f∗(A • ρ) = f∗A • f∗ρ, (3.12)

where f∗ρ = ρ ◦ f ∈ C∞(U,G) , we conclude that f∗(A • ρ) lies in the orbit space of f∗A . Hence we
get (

A
∼−−−→

(A,ρ)
A′ = A • ρ

)
M(f)−−−−→

(
f∗A

∼−−−−−−→
(f∗A,ρ◦f)

f∗(A • ρ) = f∗A • f∗ρ
)
.
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That is, M(f)(A, ρ) := (f∗A, f∗ρ) is a morphism in M(U). Note that Equation (3.12) can be proven
via the local computations of the pullback of a connection A together with the action A • ρ.

Proof This is similar to the proofs of Lemma 3.1 and Theorem 1.1, with the special setup, where n = 3 and
M as above. For a complete treatment to the generic case (i.e. without flatness requirement), see [3, Examples
2.10 and 2.11]. For the flat case, on the other hand, one has exactly the same proof with Ω1(U, g)flat instead
of Ω1(U, g) thanks to the fact that the pullback of a flat connection by a canonical inclusion U ↪→ V between
open subsets is also flat. We leave details to the reader. 2

Let us summarize our progress so far.

1. Before (nontrivial) stacky constructions, we already have an isomorphism EH(M)
∼−→Mflat,Σ,G between

the phase spaces of gravity and the associated gauge theory for the case of vacuum 3D gravity on
M = Σ × (0,∞) , with Λ = 0 and G = ISO(2, 1) , where Σ is a closed Riemann surface of genus
g > 1 (cf. Remark 2.19, Theorem 2.20). Notice that both spaces EH(M),Mflat,Σ,G are essentially the
set of equivalence classes. Since any set can be seen as a groupoid with the elements as objects and identity
morphisms, we have a trivial stacky structure only.

2. We define the stack E of Einstein gravity (cf. Theorem 1.1, Definition. 3.5) providing a nontrivial stacky
structure on top of the naïve moduli space EH(M).

3. From Lemma 3.7, we give the stack M of G-bundles with flat connections on M := Σ× (0,∞) . Likewise,
M gives a nontrivial stacky structure on top of the moduli space Mflat,M,G.

What is next: Let E ,M, and the category C be as above and G = ISO(2, 1) . Suppose that the underlying
manifold M is of the form Σ × (0,∞) , with Σ a closed Riemann surface of genus g > 1 . Then we prove the
following.

Claim. There exists a natural transformation

Cop Grpds,

M

E

Φ

(3.13)

between the stacks E and M . It thus provides a stacky extension of the isomorphism Mflat,Σ,G
∼−→ EH(M) .

Construction of the natural 2-morphism Φ in (3.13). Recall from §2.2.2 that given a flat ISO(2, 1) -
connection A with a unique decomposition A = ω + e in terms of the spin connection and triad, we can
construct a flat metric g(e) with g(e)µν = ηabe

a
µe
b
ν , where η denotes the Minkowski metric. Note also that this

construction naturally relates infinitesimal gauge transformations to infinitesimal diffeomorphisms (cf. Remark
2.16). Thus, for any object U in C , we have a natural map

ΦU :M(U) −→ E(U), (3.14)

which is indeed a functor of groupoids and defined as follows:
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1. To each flat ISO(2, 1) -connection A = ωA + eA in Ω1(U, iso(2, 1))flat, it assigns the corresponding flat
metric g ∈ FMet(U) , described by the triad over U . That is, on objects of M(U) , it maps

ΦU : A 7→ gA := g(eA) = ηabe
a
A ⊗ ebA. (3.15)

2. Due to the equivalence of gravity with gauge theory (cf. Theorem 2.20), the gauge equivalence classes of
connections [A] correspond to the equivalence classes of the associated flat Lorentzian metrics [gA] , and
vice versa. This will allow us to form the following diagrams in (3.16) and (3.20).

Note that, from Remark 2.16, we only consider diffeomorphisms in the connected component of the identity
to ensure the desired equivalence. In brief, for any A′ ∈ [A] over an open subset U , i.e. A′ = A • ρ for
some ρ ∈ G = C∞(U, ISO(2, 1)) , the corresponding metrics, say gA and gA•ρ , are also equivalent, and
hence lie in the same equivalence class (and vice versa). That is, there exists an automorphism ϕρ of
Sym2(T ∗U) , an infinitesimal diffeomorphism associated to ρ (cf. Definitions 3.2 and 3.3), such that
gA•ρ = gA ·ϕρ. In other words, such a correspondence can also be expressed as the commutative diagram

gA gA · ϕρ

A A • ρ

ΦU

∃ φρ

ρ

ΦU

(3.16)

together with the maps (relating infinitesimal diffeomorphisms to infinitesimal gauge transformations)

Aut(Sym2(T ∗U)) −→ C∞(U,G), ϕ 7→ ρφ, (3.17)

C∞(U,G) −→ Aut(Sym2(T ∗U)), ρ 7→ ϕρ. (3.18)

Note that Aut(Sym2(T ∗U)) is endowed with the usual composition, and the group operation on C∞(U,G)

is given by the pointwise multiplication.

3. To each morphism (A, ρ) : A −→ A′ in HomM(U)(A,A
′) , ΦU assigns a morphism

gA
∼−−−−−→

(gA,φρ)
gA · ϕρ (= gA′), (3.19)

where ϕρ ∈ L(U) is an infinitesimal diffeomorphism corresponding to ρ in accordance with Diagram
3.16. Therefore, for any morphism f : U ↪→ V in C , using the map in (3.18), one also has the following
commutative diagram.

Aut(Sym2(T ∗V )) Aut(Sym2(T ∗U))

C∞(V, ISO(2, 1)) C∞(U, ISO(2, 1))

f∗

f∗
(3.20)
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4. Functoriality. Given a composition of morphisms in M(U)

A A • ρ (A • ρ) • σ ,

A • (ρσ) =: A • (σ ◦ ρ)

(A, ρ) (A • ρ, σ)

we have the commutative diagram

gA gA · ϕρ (g · ϕρ) · ϕσ =: g · (ϕσ ◦ ϕρ)

A A • ρ (A • ρ) • σ = A • (ρσ),

φρ φσ

ρ σ

where the vertical maps are ΦU . Using the commutativity, observe

gA · ϕρσ = gA•(ρσ) = gA•ρ · ϕσ = (gA · ϕρ) · ϕσ.

Then we obtain gA · ϕρσ = (gA · ϕρ) · ϕσ for any A , and hence ϕρσ = ϕρ · ϕσ . This gives the desired
functoriality on compositions:

ΦU (A, ρσ) = ϕρσ = ϕρ · ϕσ = ΦU (A, ρ) · ΦU (A, σ).

Now, we need to show that for each morphism f : U → V in C , i.e. f : U ↪→ V with U ⊂ V , we have
the following commutative diagram.

M(V ) E(V )

M(U) E(U)

M(f)

ΦV

ΦU

E(f)

(3.21)

In fact, the commutativity follows from the definition of ΦU : Let A ∈ Ω1(V, iso(2, 1))flat , then we get,
from the construction and from the restriction functor ·|U , the natural diagram

A gA

A|U gA|U = (gA)|U .
(3.22)
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Hence, for an object A ∈M(V ) , a direct computation yields(
E(f) ◦ ΦV

)
(A) = f∗gA

= (gA)|U

= gA|U from (3.22)

= gf∗A

= ΦU (f
∗A)

=
(
ΦU ◦M(f)

)
(A), (3.23)

which gives an “objectwise” commutativity of Diagram (3.21). Similarly, for any morphism

(A, ρ) : A −→ A • ρ = A′ in HomM(V )(A,A
′),

and for each morphism f : U ↪→ V , one has another natural diagram again from the definition and the restriction
functor as above:

ρ ϕρ

ρ|U ϕρ|U = (ϕρ)|U
(3.24)

Therefore, for a morphism (A, ρ) in M(V ) , we obtain(
E(f) ◦ ΦV

)
(A, ρ) = (f∗gA, f

∗ϕρ) where f∗gA = (gA)|U

= (gA|U , (ϕρ)|U ) from (3.22)

= (gA|U , ϕρ|U ) from (3.24)

= (gf∗A, ϕf∗ρ)

= ΦU (f
∗A, f∗ρ)

=
(
ΦU ◦M(f)

)
(A, ρ), (3.25)

which implies the desired “morphismwise” commutativity in Diagram (3.21).
Conclusion. We then conclude that Φ in (3.13) defines a natural transformation between M and E via

the collection {ΦU}U∈C of the maps described in (3.14). This completes the proof of Theorem 1.3.
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A. Appendix A: symmetries in the context of Lagrangian formalism

In what follows, we summarize basic ideas about symmetries of a theory. For more details, we refer to [4].
In brief, Hamilton’s action principle allows us to study identities and conserved quantities from the

symmetries of the corresponding Lagrangian, and hence invariance properties of the action under certain
transformations. This approach applies not only to the trajectories of individual particles in classical mechanics,
but also works for continuous fields like gµν . For the case of Einstein-Hilbert action, we consider its change
under transformations of the form

gµν(x)→ gµν(x) + δgµν(x). (A.1)

The Lagrangian in this case is chosen so that the action IEH [g] is invariant under the transformation above for
the metrics satisfying Einstein field equations.

It should be noted that the variations above are not necessarily generated by diffeomorphisms. How-
ever, to capture the diffeomorphis-invariant nature of GR, we consider certain types of variations induced by
infinitesimally generated diffeomorphisms, by which we mean diffeomorphisms that are generated by a vector
field X . In that case, we call X the infinitesimal generator of the corresponding transformation.

Remark A.1 Recall that any vector field defines a one-parameter group of diffeomorphisms via its local flow.
Using an infinitesimal diffeomorphism ϕX (and hence the corresponding flow), one can examine how the metric
tensor field gµν changes when it is pulled back along the integral curves of X . Notice that this is exactly what
the Lie derivative LXgµν measures. We then introduce the following definition.

Definition A.2 By a variation induced from an infinitesimal diffeomorphism ϕX , we actually mean

δgµν := LXgµν , (A.2)

with the transformation gµν(x)→ gµν(x) + LXgµν(x).

B. Appendix B: vacuum solutions vs. flat connections

Given a 3D gravity theory on M in the sense of Definition 2.14 with G := GΛ in (2.10), we define the space of
holonomies by

HM := Hom(π1(M), G)/ ∼, (B.1)

where the quotient is given by the conjugate action of G . It follows that a (flat or constant curvature) spacetime
structure s defines a holonomy ρs ∈ HM . Therefore, we have a well-defined map

Hol :
{
(GΛ, XΛ) structures on M

}
−→ HM , s 7→ Hol(s) := ρs. (B.2)

Remark B.1 The converse is not true in general, meaning that the holonomy may not enough to determine
the whole geometry. However, there are important results for some special cases. For instance, when M has
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a topology of the form Σ × R , with Λ = 0 (corresponding to G = ISO(2, 1) with X = R2,1 ), and Σ a closed
Riemann surface of genus g > 1 , then it has been shown by Mess [13] that the holonomy group determines
a unique “maximal” spacetime M . This result will also be relevant for our purposes. In brief, we have the
following theorem.

Theorem B.2 ([13], Prop. 2) Given a Fuchsian representation‖ ρ : π1(Σ) → PSL(2;R) with Σ a closed
Riemann surface of genus g > 1 , there exists a flat Lorentzian manifold M of the form Σ × (0,∞) and
holonomy ψ : π1(Σ)→ ISO(2, 1) such that ψ = ρ.

Notice that Theorem B.2 above implies the desired map Mflat,Σ,G
∼−→ EH(M) between the corresponding

classical phase spaces, and hence the equivalence of gravity with gauge theory in the sense of Definition 2.18
(cf. Theorem 2.20).

Holonomy representation vs. flat G-bundles. There is an important interpretation of the elements of
Hom(π1(M), G)/ ∼ , which leads to defining the induced map EH(M)→Mflat,Σ,G between the corresponding
classical phase spaces (cf. the map in (2.17)).

Let Σ be a Riemann surface. It has been shown in [5] that there is a one-to-one correspondence
between the moduli space Mflat,Σ,G of (gauge equivalence classes of) flat G -connections on Σ and the moduli
space Hom(π1(Σ), G)/G of (holonomy) representations of the surface group π1(Σ) in G , where G acts on
Hom(π1(Σ), G) by conjugation. That is, we have

Mflat,Σ,G ' Hom(π1(Σ), G)/G, (B.3)

which means that flat connections can be equivalently seen as representations of π1(Σ) .
For simplicity, we now assume that M has a topology of the form Σ × R , with Σ a closed oriented

surface. Consider Lorentzian 3D gravity on M for Λ = 0 described as a (ISO(2, 1),R2,1) structure on M .
Then we obtain the composition

EH(M)
≃−→

{
(ISO(2, 1),R2,1) strucs. on M

} Hol−−→ HM
≃−→ Hom

(
π1(Σ), ISO(2, 1)

)
/ ∼ ≃−→Mflat,Σ,G, (B.4)

where the first map is equal to (2.8); the second map is the one defined in (B.2); the third one is induced by
the isomorphism π1(M) ' π1(Σ) as M ' Σ× R; and the last map is (B.3).

In general, for a 3D gravity theory on a generic M in the sense of Definition 2.14 with G := GΛ in (2.10),
it is also possible to obtain the induced map (see [6, 7])

EH(M,Λ) '
{
(GΛ, XΛ) strucs. on M

}
−→Mflat,M,GΛ , (B.5)

which assigns to an equivalence class of (flat or constant curvature) vacuum solution to the field equations a
gauge equivalence class of flat GΛ -connection of the corresponding GΛ -bundle, where Mflat,M,GΛ denotes the
moduli space of flat GΛ -connections over M .
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